Développement : Optimisation dans un Hilbert.

RM

2022-2023

Référence:

1. Oral à l'agrégation de mathématique

Énoncé:

Soient H un espace de Hilbert et $J: H \mapsto \mathbb{R}$ une fonction convexe continue et coercive, alors il existe $a \in H$ tel que :

$$J(a) = \inf_{H} J.$$

On rappelle avant quelques notions:

Définition 1: Soit X un espace normé et une fonction $f:X\mapsto\mathbb{R}$. On dit que f est coercive si

$$\forall M \in \mathbb{R}, \exists r > 0 : (x \in X : ||x|| \ge r) \Rightarrow f(x) \ge m.$$

ou alors

$$\lim_{\|x\|\to+\infty,x\in X} f(x) = +\infty.$$

En particulier si une fonction $f: X \mapsto \mathbb{R}$ est coercive et si (x_k) est une suite de X tel que $||x_k||$ diverge vers $+\infty$, alors $f(x_k)$ diverge vers $+\infty$.

Théorème 2 : Soit $J: F \mapsto \mathbb{R}$ une fonction continue et coercive, F un sous-ensemble fermé de \mathbb{R}^n . Alors J admet un minimum sur F.

Corollaire 3 : Soit V un espace vectoriel normé et G un sous-espace vectoriel de dimension finie de V. Soient $a \in V$ et F une partie fermée de G. Alors la distance $d(a,F) = \inf_{x \in F} ||a-x||$ est atteinte.

Théorème 4: Soit H un espace de Hilbert et F un sous espace vectoriel de H. Alors $H = \overline{F} \bigoplus F^{\perp}$.

Résolution:

Soit $(x_k)_{k\in\mathbb{N}}$ une suite de H telle que $J(x_k)$ converge vers $\inf_H J$.

C'est en faite pareil que dans le dév projection sur un convexe fermé, cette suite minimisante existe toujours car si I une borne inférieure (finie) alors si $\varepsilon > 0$, il existe un élément de l'ensemble y_{ε} tel que $I \leq J(y_{\varepsilon}) \leq I + \varepsilon$. On choisit donc $\varepsilon = 1/n$ et la suite existe toujours.

Si $I = -\infty$, alors de même on peut trouver un élément x_n tel que $J(x_n) < -n$ et donc on obtient aussi la suite voulus.

Supposons par l'absurde que (x_k) n'est pas bornée. Il existe alors une sous-suite avec $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $||x_{\varphi(k)}|| \to \infty$ lorsque $k \mapsto +\infty$. Or par coercivité de J, la suite $J(x_{\varphi(k)})$ diverge vers $+\infty$ ce qui est impossible. On en déduit que (x_k) est bornée. Il existe alors C > 0 tel que $||x_k|| \le C$ pour tout $k \in \mathbb{N}$.

On considère la suite $u=(\langle x_0,x_k\rangle)_{k\in\mathbb{N}}$. Par l'inégalité de Cauchy-Schwarz, cette suite réelle est bornée car $|\langle x_0,x_k\rangle|\leq \|x_0\|\|x_k\|$ pour tout $k\in\mathbb{N}$. Par le théorème de Bolzano-Weierstrass on en déduit qu'il existe une extraction φ_0 telle que $(u_{\varphi_0(k)})_{k\in\mathbb{N}}$ converge.

Par récurrence, supposons avoir construit $\varphi_0, ..., \varphi_i$ des extractions tels que $\langle x_i, x_{\varphi_0 \circ ... \circ \varphi_i(k)} \rangle$ converge. Comme précédemment, la suite $\langle x_{i+1}, x_{\varphi_0 \circ ... \circ \varphi_i(k)} \rangle$ est bornée. On en déduit, par le théorème de Bolzano-Weierstrass, qu'il existe une extraction φ_{i+1} telle que $\langle x_{i+1}, x_{\varphi_0 \circ ... \circ \varphi_{i+1}(k)} \rangle$ converge. On crée donc comme cela une suite d'extraction $(\varphi_i)_{i \in \mathbb{N}}$.

On définit alors la fonction $\psi: \mathbb{N} \mapsto \mathbb{N}$ définie par $\psi(k) = \varphi_0 \circ ... \circ \varphi_k(k)$ pour tout $k \in \mathbb{N}$. Ainsi $\langle x_i, x_{\psi(k)} \rangle$ converge pour tout i car $(\psi(k))_{k \geq i}$ est une suite extraite de $(\varphi_0 \circ ... \circ \varphi_i(k))_{k \in \mathbb{N}}$ pour tout $i \in \mathbb{N}$. Par linéarité, si l'on pose $F = \mathrm{Vect}(x_p : p \in \mathbb{N})$, alors $(\langle v, x_{\psi(k)} \rangle)_{k \in \mathbb{N}}$ converge pour tout $v \in F$. On définit la suite $y_k = x_{\psi(k)}$ de H. Comme H est un espace de Hilbert, alors $H = \overline{F} \bigoplus F^{\perp}$. Montrons que pour tout $u \in H$, la suite $(\langle u, y_k \rangle)_{k \in \mathbb{N}}$ converge. On considère $u \in H$ et $\varepsilon > 0$. Il existe $v \in \overline{F}$ et $w \in F^{\perp}$ tels que u = v + w, ainsi que $\tilde{v} \in F$ tel que $||v - \tilde{v}|| \le \varepsilon$ (définition de l'adhérence, tous les voisinage d'un point dans l'adhérence de F sont non vide intersecté avec F). Pour tous entiers k et l, on a :

$$|\langle u, y_k - y_l \rangle| = |\langle v, y_k - y_l \rangle| \le ||v - \tilde{v}|| ||y_k - y_l|| + \langle \tilde{v}, y_k - y_l \rangle.$$

On a la première égalité car u = v + w et comme $y_k - y_l \in F$, on a $\langle w, y_k - y_l \rangle = 0$. Ensuite on utilise $v = v - \tilde{v} + \tilde{v}$ avec l'inégalité de Cauchy-Schwarz.

Comme la suite $(\langle \tilde{v}, y_k \rangle)_{k \in \mathbb{N}}$ converge alors elle est de Cauchy. Il existe donc un entier N tel que pour tout $k, l \geq N$, $|\langle \tilde{v}, y_k - y_l \rangle| \leq \varepsilon$. Ainsi pour tout $k, l \geq N$,

$$\begin{aligned} |\langle u, y_k - y_l \rangle| &\leq \|v - \tilde{v}\| \|y_k - y_l\| + \langle \tilde{v}, y_k - y_l \rangle \\ &\leq \varepsilon (\|y_k\| + \|y_l\|) + \varepsilon \\ &\leq \varepsilon 2C + \varepsilon \end{aligned}$$

On en déduit que la suite $(\langle u, y_k \rangle)$ est de Cauchy dans \mathbb{R} . Comme \mathbb{R} est complet, cette suite converge vers une limite que l'on note $l_u \in \mathbb{R}$. On définit la fonction $\varphi : H \mapsto \mathbb{R}$ qui à u associe l_u . Par la linéarité de la fonction $x \mapsto \langle x, y_k \rangle$ de H dans \mathbb{R} et par l'unicité de la limite d'une suite convergente, on en déduit que φ est une forme linéaire. De plus comme (x_k) est bornée, par inégalité de Cauchy-Schwarz, on a $|\varphi(u)| \leq ||u||C$ pour tout $u \in H$, donc φ est continue. Par le théorème de représentation de Riesz, on en déduit qu'il existe $a \in H$ tel que $\varphi(u) = \langle a, u \rangle$. Ainsi pour tout $u \in H, \langle u, y_k \rangle$ converge vers $\langle u, a \rangle$.

Il reste à montrer que le minimum de J sur H est bien atteint en a. Pour $\beta > \inf_H(J)$, on définit $C_{\beta} = \{x : J(x) \leq \beta\}$. Comme J est convexe continue, on a que C_{β} est un convexe fermé non vide de H, et donc la distance à C_{β} d'un point $x \in H$ est toujours atteinte en un unique point. On note $p : H \mapsto C_{\beta}$ l'application de projection sur C_{β} . Comme $J(x_k)$ converge vers $\inf_H(J)$, alors $J(y_k)$ aussi. Ainsi, il existe $N \in \mathbb{N}$ tel que $\forall k \geq N, J(y_k) \in C_{\beta}$.

D'après le théorème de projection sur un convexe fermé

$$\langle y_k - p(a), a - p(a) \rangle < 0$$

Or $\langle y_k, a - p(a) \rangle$ converge vers $\langle a, a - p(a) \rangle$, donc on en déduit que $||a - p(a)||^2 \leq 0$. Ce qui aboutit à a = p(a) et $a \in C_{\beta}$. Ainsi, $J(a) \leq \beta$ pour tout $\beta \in \mathbb{R}$ tel que $\beta > \inf_H(J)$. On en déduit que $J(a) = \inf_H(J)$.